Oxidative Stress-Induced DNA Damage by Manganese Dioxide Nanoparticles in Human Neuronal Cells

نویسندگان

  • Saud Alarifi
  • Daoud Ali
  • Saad Alkahtani
چکیده

Metal nanoparticles have been extensively used in industry as well as in biomedical application. In this work, we have evaluated the toxic potential of manganese dioxide (MnO2) nanoparticles (MNPs) on human neuronal (SH-SY5Y) cells. Cellular toxicity due to MNPs (0, 10, 30, and 60 μg/ml) on the SH-SY5Y cell was observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) tests. MNPs produced reactive oxygen species (ROS) and declined in mitochondrial membrane potential in the SH-SY5Y cell in dose and duration dependent manner. Moreover, lipid peroxide (LPO), superoxide dismutase (SOD), and catalase (CAT) activities were increased and glutathione was reduced in dose and time dependent manner. A significant upgrade in Hoechst 33342 fluorescence intensity (chromosome condensation) and phosphatidylserine translocation (apoptotic cell) was visualized in cells treated with MNPs for 48 h. On the other hand, caspase-3 activity was increased due to MNPs in SH-SY5Y cells. DNA strand breaks were determined by alkaline single cell gel electrophoresis assay (Comet Assay) and maximum fragmentation of DNA produced due to MNPs (60 μg/ml) for 48 hours. This result provides a basic mechanism of induction of apoptosis and toxicity by MNPs in SH-SY5Y cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats

Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce ‎oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced ‎damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral ‎administration and the protective role of NAC on testes of a...

متن کامل

Evaluation of epigenetic changes of liver tissue induced by oral administration of Titanium dioxide nanoparticles and possible protective role of Nigella Sativa oil, in adult male albino rats

Objective (s): Titanium dioxide nanoparticles (TiO2 NPs) have been recognized as biologically inert material and have been used in a multitude of applications. Nevertheless, the negative impact on the human health is not yet well understood. Aim of the work: The study attempted to evaluate the epigenetic changes of the genome, in the form of DNA methylation in liver tissue samples, resulting fr...

متن کامل

Effect of rutin on oxidative DNA damage in PC12 neurons cultured in nutrients deprivation condition

Objective(s): Rutin is a flavonoid with potent antioxidant property, which exhibited cytoprotective effects in several models of neuronal injury. This work aimed to examine whether rutin can protect neurons against oxidative DNA damage caused by serum/glucose deprivation (SGD) as an in vitro model of neurodegeneration and ischemia. Materials and Metho...

متن کامل

Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines

BACKGROUND Titanium dioxide nanoparticles (TiO2 NPs) are widely used in the biological sciences. The increasing use of TiO2 NPs increases the risk of humans and the environment being exposed to NPs. We previously showed that toll-like receptors (TLRs) play an important role in the interactions between NPs and cells. Our previous results indicated that TLR4 increased the DNA damage response indu...

متن کامل

Effect of Zirconium Dioxide Nanoparticles on Glutathione Peroxidase Enzyme in PC12 and N2a Cell Lines

Objective: Today, special attention is paid to the use of zirconium dioxide nanoparticle (nano-ZrO2), a neutral bioceramic metal, particularly for drug and gene delivery in medicine. However, there are some reports implying that use of nano-ZrO2 is associated with cytotoxic effects like inhibiting the cell proliferation, DNA damage and apoptosis. In the present study, we examined whether nano-Z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017